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Abstract In situ measurement of the elastic nonlinear site response is advantageous to provide optimal
information for prediction of strong ground motion at a site. We report the first implementation of a
technique known as Dynamic Acoustoelastic Testing (DAET) in situ with the ultimate goal of developing a
new approach for site characterization. DAET has shown promising results at the laboratory scale for the
study of nonlinear elasticity of Earth materials, detailing the full nonlinear elastic properties of the studied
sample. We demonstrate the feasibility of DAET in situ and compare it to other methods (nonlinear
resonance spectroscopy, wave amplitude dependence of propagation velocity, and wave distortion).
Nonlinear elastic properties are characterized by DAET with the advantage of providing a local assessment
compared to other methods, here at a depth of 4 m to 5 m. A vertical dynamic strain amplitude of 5 × 10−5

produces a relative change in compressional wave modulus of 6%. We measure an effective parameter of
quadratic elastic nonlinearity of order −103, the same order of magnitude measured at the laboratory scale
in rocks and in packs of unconsolidated glass beads. Hysteresis is observed in the variation in soil elasticity
as a function of the instantaneous dynamic strain that evolves as the dynamic strain amplitude is increased
from 9 × 10−7 to 5 × 10−5.

1. Introduction

Strong ground motion occurs most frequently where low-velocity, soft sediments overlay hard rock. When
seismic waves encounter low seismic velocity material, it increases wave amplitude due to conservation of
momentum. In addition, standing waves can be generated with associated large amplitudes for resonant
frequencies as a consequence of the layered structure of soil deposits. The effect of the local material elas-
ticity on seismic wave frequency and amplitude is broadly known as the site effect. Seismic wave-induced
ground motions can be either amplified or dissipated significantly relative to bedrock, and quasi-standing
wave frequencies can be altered significantly due to the phenomena of nonlinear dissipation and ”modulus
reduction,” respectively [e.g., Field et al., 1997]. In situ observations [e.g., Johnson et al., 2009] and numer-
ous laboratory studies [Stokoe et al., 1999; Beresnev and Wen, 1996; Johnson and Jia, 2005; Brunet et al., 2008]
confirm that sediments under dynamic wave loading produce wave amplitude-dependent, nonlinear, and
hysteretic elastic behavior due to nonlinear contact mechanics.

Observations of nonlinear site effects are widespread, including from the 1994 Northridge earthquake
[Field et al., 1997, 1998; Beresnev and Wen, 1996], the 1994 Hyogoken Nanbu earthquake at Port Island,
Kobe [Aguirre and Irikura, 1997], the 2001 M 6.8 Nisqually earthquake [Frankel et al., 2002], the 2003 Mw 7.0
Miyagi-Oki earthquake [Tsuda et al., 2006], the 1989 Mw 6.9 Loma Prieta Earthquake [Rubinstein and Beroza,
2004], the 1999 Chi-Chi, Taiwan, earthquake [Roumelioti and Beresnev, 2003], the 1994 Mw 8.2 Hokkaido
Toho-oki earthquake [Higashi and Sasatani, 2000], as well as scores of others. In situ observations [e.g., Field
et al., 1997] show that the shear elastic modulus of soil can be reduced in more than half for strain ampli-
tudes between 10−5 and 10−4 [Johnson et al., 2009], consistent with laboratory measurements [Beresnev and
Wen, 1996].

Laboratory measurements designed to extrapolate to various earthquake ground motions are a useful com-
plement to field observations. Core samples are commonly used for laboratory measurements of elastic

RENAUD ET AL. ©2014. American Geophysical Union. All Rights Reserved. 1

http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-9356
http://dx.doi.org/10.1002/2013JB010625


Journal of Geophysical Research: Solid Earth 10.1002/2013JB010625

nonlinear behavior [Hardin and Drnevich, 1972a, 1972b; Ishihara, 1996; Seed et al., 1986]. A drawback in mea-
suring properties from core for unconsolidated sediments is the fact that they are difficult to handle, and
the soil studied in the laboratory is usually in a different compaction state than in the field. Since it is known
that the elastic properties of unconsolidated soils depend on their compaction state [Inserra et al., 2008; Jia
et al., 2011], the extrapolation of these laboratory results to field conditions is challenging and motivates the
development of in situ characterization approaches.

Over the last decade, active in situ methods have been under development for probing elastic properties
in the field [Stokoe et al., 2001, 2008; Menq et al., 2008; Lawrence et al., 2008, 2009; Johnson et al., 2009].
These methods involve strong shaking of the ground from a surface vibrator and measuring the response
at the surface or in boreholes. In most cases, the vibration wave provides both the elastic disturbance and
is also the measured quantity used to extract nonlinear elasticity and dissipation characteristics. Recently, a
two-wave, or pump-probe method known as Dynamic Acoustoelastic Testing (DAET) has been under devel-
opment, where a low-frequency vibration signal disturbs the material while a high-frequency low-amplitude
wave probes the disturbance through multiple cycles of the low-frequency wave [Renaud et al., 2009, 2011,
2012, 2013b]. Conceptually, this is identical to a laboratory acoustoelasticity measurement, where wave
speed is measured as a sample is stressed [Winkler and McGowan, 2004; Jaeger et al., 2007; Bell, 1992; Bourbié
et al., 1987]; however, in DAET the perturbation is a low-frequency wave, instead of a quasi-static load. A
similar technique has been applied in situ to probe friable soils in field conditions [Geza et al., 2001].

Our goal in this paper is to further develop the DAET approach to in situ conditions, with the ultimate goal
of developing a new technique for evaluating site response. Here we report the use of DAET to characterize
the nonlinear elastic behavior of a field site near Austin, Texas, USA. Our results demonstrate the feasibility
of the technique in situ. We compare it to other in situ approaches, particularly nonlinear resonance spec-
troscopy, wave amplitude-dependent propagation velocity, and waveform distortion induced by nonlinear
propagation. We show that indeed the method can be used to extract nonlinear elastic properties of a site.
We also describe modifications that would improve its applicability.

2. Nonlinear Elasticity and Propagation of Elastic Waves

Nonlinear elasticity is defined as deviations from Hooke’s law where the stiffness (or the elastic modulus)
of a material depends on the applied strain (static or dynamic) and possibly on the strain rate. In metals
and polymers, the relative variation in stiffness is of order 1–10 per unit strain. In cracked or granular media,
cracks and contacts between grains can tremendously enhance relative stiffness variations that can be
of order 1000 per unit strain, thus some orders of magnitude higher than in undamaged homogeneous
solids. In a one-dimensional configuration, the equation of state relating the stress ! to the strain " can be
described as [Zarembo and Krasil’nikov, 1971; Guyer and Johnson, 2009]

! = M0

(
" + #∕2 "2 + $∕3 "3 + H [", "̇]

)
, (1)

where M0 is the linear elastic modulus, # and $ account for classical quadratic and cubic nonlinear elasticity,
respectively, and the term H [", "̇] accounts for hysteretic nonlinearity. In short, nonlinear elasticity causes
the propagation of an elastic wave to be dependent on the wave amplitude. As a consequence, the wave
speed and the attenuation depend on the amplitude of the elastic wave. Moreover, the waveform is dis-
torted in the course of its propagation. Of importance here is the fact that elastic nonlinearity enables two
elastic waves to interact with one another. If one wave has a large amplitude (pump) and the second has a
small amplitude (probe), then the propagation velocity of the probe wave is modulated by the pump wave.
Strain is generally considered as the main controlling parameter of nonlinear elasticity [Guyer and Johnson,
2009]; therefore, acceleration signals (see section 3.2).

3. Dynamic Acoustoelastic Testing In Situ

The purpose of DAET is to measure the wave amplitude dependence (or more generally stress dependence)
of the compressibility of a material, i.e., the nonlinear portion of its equation of state (nonlinear elasticity). In
DAET, we capitalize on the pump-probe concept: a material is probed simultaneously by two elastic waves,
a low-frequency (LF) sine burst and a sequence of high-frequency (HF) pulses. A first source generates an LF
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Figure 1. Photograph of the truck-mounted shaker ("T-Rex") used
to generate the low-frequency wave (pump wave).

wave to dynamically stress a large volume of
the propagation medium. A second source
broadcasts the sequence of HF pulses in the
studied area to determine the changes of
time of flight (TOF) and amplitude of the
HF pulses. Variations in the amplitude of
the HF pulses correspond to changes of the
HF attenuation induced by the LF forcing.
Changes of TOF can be related to changes
of elasticity of the soil. The nonlinear elas-
tic parameters of the soil are extracted from
the measured stress-induced variations
in elasticity.

A unique advantage of DAET is the fact that
it employs sinusoidal elastic waves, provid-
ing the means to probe the material under

different stress states about the equilibrium state, producing both expansion and compression of the mate-
rial as the LF signal sweeps over multiple sinusoidal cycles. As such, the method has been demonstrated to
provide unique observation of complicated hysteretic behaviors and expansion-compression asymmetry in
the laboratory [Renaud et al., 2009, 2011, 2012, 2013b].

In summary, the physical idea that informs the development and use of DAET is that in a nonlinear material,
two elastic waves from independently controlled sources interact with one another. The interaction carries
information about the two independently controlled elastic waves, and it carries information about the non-
linear material in which these waves interact. The physical idea is sharpened in DAET, to focus on extracting
information about the nonlinear material, by having the first of the independently controlled elastic wave
to be of low frequency and large amplitude (the pump wave or LF wave) and having the second of the inde-
pendently controlled elastic wave to be of high frequency and small amplitude (the probe wave or HF wave).
Essentially, the probe wave detects the disturbance of the material brought about by the pump wave.

3.1. Experimental Configuration
The site chosen for this field application of DAET is located near Hornsby Bend (Austin, Texas, USA). The field
had been ploughed in the preceding decades, leaving plough tillage (with topsoil and rocks) at the ground
surface. The test site was prepared by removal of surface vegetation using a tiller. The top of the vegetation
and topsoil was tilled and removed by hand with a shovel to reach native sandy silt at a depth of approx-
imately 7 cm. The soil at this depth had a water content of 4 to 5% and a density (wet) of approximately
1900 kg/m3 [LeBlanc et al., 2012].

The LF source (pump), from a mobile hydraulic shaker dubbed T-Rex (Industrial Vehicles International Inc.,
Tulsa, USA), Figure 1, is a 4 m2 square base plate that presses on the ground with a DC downward force of
267 kN (66.8 kPa). This base plate is driven vertically at 30 Hz during 0.7 s (21 periods) with AC force ampli-
tudes that vary from 9 kN to 222 kN. Throughout the experiment, the downward force is greater than zero,
i.e., the base plate does not lose contact with the ground.

A 30 cm diameter borehole was drilled to a depth of 3 m near the base plate of the T-Rex (x = 1.9 m and
y = 1.2 m; see Figure 2). Two accelerometers (one-dimensional, AC135-1A, nominal sensitivity 0.5 V/g ±3%,
±10% frequency response 0.6–1500 Hz, Connection Technology Center Inc., Victor, USA) were installed
at a depth of 4 m (detector 1) and 5 m (detector 2) to measure the vertical component of acceleration
(Figure 2). The installation process involved boring a 3.8 cm diameter hole by hand auger to the required
depth, alignment and installation of the accelerometer using a 6 m long PVC pipe, and backfill with native
soil of the auger hole above the accelerometer. Backfilling was performed by placing auger material in the
holes and using a rod to compact the soil. Care was taken to compact the backfilled soil to the same density
as the in situ soil (evaluated by volume of auger material remaining). The uncertainty of the 1 m distance
between the two accelerometers is ±1 cm. The precision of the distance between the base plate of the
T-Rex and the accelerometers is ±5 cm. A HF vibratory source (Redpath Geophysics, Murphys, USA) was
placed at 3 m depth. The HF source (probe) is a 13 cm diameter piston moving vertically (along z direction)
and broadcasting HF pulses downward. It is driven with a sequence of 1 kHz short sine bursts with duration
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Figure 2. (a) Top view and (b) side view depicting the experimental configuration, the position of the T-Rex (LF source),
and the measurement borehole with the HF source and the two buried accelerometers.

of 3 ms (three periods), repeated every 12.5 ms, at constant amplitude during the entire course of
the experiments.

3.2. Signal Processing and Data Acquisition
The basic data sets are the acceleration time trains recorded on detectors 1 and 2 (Figure 2b). The output of
the accelerometers is an analog voltage, and this is fed to a recording system at the surface which digitally
converts the signal with a sampling period of &sample = 20 μs. Each time train is split into (1) a LF part, found
by Fourier analysis and band passing at 20 Hz < f < 200 Hz and (2) a HF part, found by Fourier analysis
and band passing at 700 Hz < f < 5000 Hz. As an illustration, we show in Figure 3 a raw acceleration signal
measured by the accelerometer at 4 m depth and its decomposition into LF and HF portions.

The resulting time trains, accelerations 'LF(t) and 'HF(t), are converted to displacements uLF(t) and uHF(t) by
double time integration. Strains "LF(t) and "HF(t) are obtained using

"LF =
[

uLF 5m depth(t) − uLF 4m depth(t)
]
∕L, (2)

"HF =
2πfHF

VHF
× uHF(t), (3)

where L, fHF, and VHF are the distance between the two buried detectors, the center frequency of the probe
HF pulses, and the compressional wave speed measured with the probe HF pulses, respectively. While the
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Figure 3. (a) Acceleration time signal measured by the accelerometer at 4 m depth. The LF source is driven with an AC
force amplitude of 133 kN. (b) LF signal and (c) HF signal extracted by means of two band-pass frequency filtering with
bands (20 Hz–200 Hz) and (700 Hz–5000 Hz), respectively.

calculation of the LF strain is exact by differentiation of the LF displacement measured by detectors 1 and 2
(the LF displacement field varies smoothly between 4 m and 5 m depth), the HF strain is estimated at detec-
tors 1 and 2 assuming a monochromatic plane wave model. Figures 4a and 4b show the calculated time
signals of the LF strain and the HF strain.

The HF source (probe) produces an estimated dynamic strain amplitude of 8.1 × 10−8 at detector 1 and
1.5 × 10−8 at detector 2, much smaller than dynamic strains generated by the LF source (base plate of the
T-Rex) that range from 9 × 10−7 to 5 × 10−5 (see section 3.3). The amplitude of the HF signal at detector
2 decreases from that at detector 1 by a factor of 5.4 due to intrinsic absorption, scattering, and geomet-
rical spreading of the wavefront. The first HF pulse in the sequence of HF pulses (Figure 3) propagates in
undisturbed soil; it is used to establish that the time of flight from detector 1 to detector 2 is t0 = 1.86 ms
(obtained by using a cross-correlation method applied to signals received by the two accelerometers). It
corresponds to a compressional velocity VHF = 538 m/s ± 1% in undisturbed material.

In order for the results of a DAET experiment to have simple interpretation, we want the LF wave to establish
a strain field that remains in place for a period of time long compared to the time during which the HF probe
field encounters it, i.e., the time to travel from detector 1 to detector 2. The LF strain field has a period of
TLF = 33.3 ms, therefore 18 times larger than t0 = 1.86 ms as required. The LF strain field ideally varies
spatially only slightly in the region traversed by the HF pulses.

3.3. Experimental Protocol
The probe of the nonlinear properties of the soil is conducted with an elaborate experimental protocol. It
consists of a reference run and a stepwise sequence of runs at finite LF source amplitude. The LF source
(T-Rex truck) is driven successively at nominal peak force amplitudes of 9-18-9-36-9-67-9-133-9-222-9 kN.
The corresponding LF strain amplitudes produced between the two buried accelerometers are given in
Figure 5. A reference run at the lowest LF source amplitude (9 kN), interleaved between all runs at finite LF
source amplitude, is applied to monitor potential slow evolution of the elastic properties of the site. We
describe now the detailed experimental protocol.

1. The reference run.
(a) The HF source is turned on and a HF pulse is broadcasted every 12.5 ms for approximately 1000 ms

(Figures 3 and 4).
(b) Using the lowest LF source amplitude, strain "0 = 9 × 10−7, the LF source is turned on about 50 ms

after the HF source is turned on and kept on for approximately 21 periods, about 700 ms. In this first
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Figure 4. (a) LF strain measured between the two buried
accelerometers as a function of time calculated from the LF accel-
eration signals measured at 4 m depth (Figure 3b) and 5 m depth
using equation (2). The driving force amplitude of the LF source
is 133 kN. (b) HF strain as a function of time estimated from the
HF acceleration signal measured at 4 m depth (Figure 3c) using
equation (3). (c and d) Enlargements of Figures 4a and 4b between
0.4 s and 0.45 s. (d) How the broadcast of the sequence of HF pulses
is applied with three different delays (0, 1.9 ms, and 3.7 ms) with
respect to the LF strain in order to probe soil under various discrete
states of compression and expansion, at a given driving LF force
amplitude. A positive LF strain produces an expansion of the soil
while a negative LF strain represents a compressive strain.

run at "0 the phase of the initial LF
pulse is set to zero relative to an arbi-
trary fiducial point in the sequence of
HF pulses.

(c) With drive amplitude remaining at "0

a. Steps (a) and (b) are repeated
exactly with the single differ-
ence that the initial LF source
is advanced in time by 1.9 ms
relative to the fiducial point in
the HF time train (Figure 4). This
causes the HF pulses to traverse
the soil under slightly different LF
strain states.

b. Steps (a) and (b) are repeated
exactly with the single difference
that the timing of the LF source is
advanced in time by 3.7 ms rela-
tive to the fiducial point in the HF
time train (Figure 4). Again, this
ensures that the HF pulses tra-
verse the soil under other slightly
different LF strain states.

Thus, a run has three components iden-
tified by the three settings of the time
advance relative to the fiducial time.
This first run, with the HF pulses cross-
ing the 1 m thick region of soil between
detectors 1 and 2 at many possible
phases of the LF broadcast, is inserted
throughout the measurement protocol
to track the possible slow evolution of
the elastic properties of the site.

2. Run at "1. Using LF source amplitude cor-
responding to "1 = 2 × 10−6 steps (a)–(c)
are repeated.

3. The reference run is repeated.
4. The measurement protocol continues.

There are five runs at finite LF source
amplitude, "1 = 2×10−6 … "5 = 5×10−5,
and six reference runs, "0 = 9 × 10−7

(Figure 5). All runs, reference and finite
amplitude, have three components.

Note that the choice of 1.9 ms and 3.7 ms time shifts (Figure 4) was driven by experimental time consid-
erations. Three components for each run (i.e., each LF driving amplitude) add significant time sampling
improvement, but more components obtained with additional time shifts would further improve the results
since the soil would be probed at higher time-sampling rate, i.e., at even more different states of dynamic
compression and expansion.

3.4. Static Strain Field Between the Two Buried Detectors
The static strain field imposed by the DC downward force was estimated assuming an isotropically elas-
tic solid half-space by the numerical evaluation of the analytical solution derived by Becker and Bevis
[2004] (Figure 6). Based on LeBlanc [2013], we used 500 m/s and 250 m/s as average values on the site for
the velocity of compressional and shear waves, respectively. We use the convention that a positive strain

RENAUD ET AL. ©2014. American Geophysical Union. All Rights Reserved. 6



Journal of Geophysical Research: Solid Earth 10.1002/2013JB010625

1 2 3 4 5 6 7 8 9 10 11
10−8

10−7

10−6

10−5

10−4

Step of measurement protocol

st
ra

in
 a

m
pl

itu
de

 

 
vertical LF strain between 2 accelerometers
estimated vertical HF strain at 4 m depth
estimated vertical HF strain at 5 m depth

Figure 5. LF dynamic strain amplitude measured between the two
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estimated at the two detectors; the driving amplitude of the LF source
is constant through the entire measurement protocol. The reference
runs at the lowest LF amplitude and the HF amplitudes show that only
a small evolution of the elastic properties of the site occurred from runs
9 to 11 due to strong shaking generated by the T-Rex. The method to
calculate the LF and HF strain amplitudes is detailed in section 3.2.

corresponds to an expansion of the
material while a negative strain cor-
responds to a compression. The the-
oretically calculated DC strain field
experienced by the region of soil probed
by the HF pulses at x = 1.9 m (horizontal
coordinate), y = 1.2 m (second horizon-
tal coordinate), and z = 4.5 m (vertical
coordinate) is "xx = +2.7 × 10−6,
"yy = +3.9 × 10−6, "zz = −1.1 × 10−5,
"xy = −1.3 × 10−6, "zx = −5.9 × 10−6, and
"zy = −3.7 × 10−6. Finite element mod-
eling using PyLith [Aagaard et al., 2013]
leads to similar strain values. The volu-
metric DC strain defined as "xx + "yy + "zz

equals −4.1 × 10−6, meaning that the soil
traversed by the HF pulses experiences
compression. Additionally, the litho-
spheric pressure (pressure on soil caused
by the overlying weight of material from
above) is of order 84 kPa which produces
a DC vertical compressive strain of order
"zz = −1.8 × 10−4 (Figure 6). There-
fore, the DC vertical strain induced by the
lithospheric pressure between the two
downhole detectors overwhelms the DC
vertical strain produced by the T-Rex at

this location ("zz = −1.1 × 10−5) and hence determines the rest state of the soil. This means that the soil
traversed by the HF pulses is under compression during the entire measurement.

3.5. Dynamic Pump Strain Field Between the Two Buried Detectors
The dynamic strain field produced at the largest AC force (222 kN) was calculated by the numerical eval-
uation of the analytical solution derived by Jones et al. [1998] (using a loss factor of 0.01). At this driving
amplitude, the acceleration measured on the base plate of the T-Rex leads to a peak amplitude for the verti-
cal dynamic displacement of 0.9 mm. This value is used to scale the numerical estimates detailed below. The
base plate of the T-Rex is a square having a width of 2 m, and the LF wavelength for compressional waves
is about 17 m. Therefore, the 30 Hz LF broadcast at the location of the two accelerometers corresponds to
the case of the near field of a “short antenna”(size of the radiating source is much smaller than the wave-
length). At the largest AC force, the LF strain field theoretically calculated between the two accelerometers
(x = 1.9 m, y = 1.2 m, and z = 4.5 m) is such that the peak LF strain amplitudes are "xx = 2.7 × 10−5,
"yy = 3.1×10−5, and "zz = 6.1×10−5 (Figure 6). Thus, the largest component is the vertical LF strain "zz , and its
sign is opposite to that of "xx and "yy . The corresponding volumetric LF strain amplitude is 3×10−6; it has the
same sign as the vertical LF strain "zz . Note that there exist shear strain components that are smaller than "zz .
Additionally, we performed a finite difference time domain (FDTD) simulation for lossless elastic wave prop-
agation (SimSonic) [Bossy et al., 2005] and obtained a vertical LF strain amplitude "zz of 5.5 × 10−5. The latter
value is very close to that obtained with the analytical solution. Experimentally, we measured "zz = 4.9×10−5

applying equation (2) (Figure 5) therefore in good agreement with numerical estimates.

In the remainder of the manuscript, we call LF strain the vertical component of the dynamic strain "zz

produced by the base plate of the T-Rex between the two accelerometers, i.e., in the region probed by the
HF pulses.

3.6. Data Processing and Analysis of DAET
The first data processing step is to determine the traveltime and attenuation of the HF pulses (probe) in
order to observe how these quantities depend on the strength of the LF strain (pump) that the HF pulses
experience. As noted, a HF pulse received at detector 1 goes on to detector 2, crossing
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is indicated by a double arrow. The DC vertical strain imposed by
the 267 kN downward force is estimated with an analytical solu-
tion [Becker and Bevis, 2004]; it turns out to be smaller than the
effect of lithospheric pressure. The AC vertical strain amplitude pro-
duced by the base plate of the T-Rex is estimated at the largest
driving amplitude (222 kN) with two methods: numerical evalua-
tion of an analytical solution [Jones et al., 1998] and 3-D lossless
FDTD simulation [Bossy et al., 2005]. The AC vertical strain ampli-
tude measured experimentally is in good agreement with the two
numerical estimates.

L = 1 m, in t0 = 1.86 ms. The LF strain
modulates the properties of the mate-
rial along the L path by a small amount.
The resulting shift in the time to traverse
L can be found from the cross correla-
tion of the detected signal at detector 1
with the detected signal at detector 2.
The cross correlation is carried out apply-
ing Tukey windows (ratio of the length of
taper section is 5%) of width 4 ms which
cover the first four periods of the HF
pulses. Note that the duration of the HF
pulses received at the two detectors is
longer than that of the excitation wave-
form (3 ms) of the HF source because of
the response of the HF source (ringing)
and scattering. The typical lag/lead in
the resulting cross correlation, when
the time t0 associated with crossing
L at "LF = 0 is removed, is of order 1%
of t0, i.e., of the same order as the time
sampling rate, 20 μs. An interpolation
scheme is used to sharpen the time res-
olution of the cross correlation [Céspedes
et al., 1995; Renaud et al., 2011, 2012].
It is in this way that the data shown
in Figure 7 are obtained. In Figure 7a
the average LF strain experienced by
the HF pulses during their propagation

from detector 1 to detector 2 is plotted as a function of time. On this time train the arrival times of the HF
pulses are indicated by open circles. This figure is constructed by overlaying the broadcasts from the three
components of the run at LF source amplitude 133 kN.

The compressional wave modulus M = ( + 2) is related to the compressional wave speed in an isotropic
solid VHF since M = *V2

HF, * is the density, and ( and ) are the second-order elastic constants of Lamé.
Remarking that M = *V2

HF = *L2∕t2 and calculating the total differential for M leads to

ΔM
M0

≈ 2ΔL
L0

+ Δ*
*0

− 2Δt
t0

(4)

The subscript 0 refers to the value in undisturbed material. Soil exhibits high elastic nonlinearity [Field et al.,
1997; Beresnev and Wen, 1996; Johnson et al., 2009], and the relative variations in the HF traveltime Δt∕t0

are a few percent if the LF strain amplitude is of order 10−5 (Δt∕t0 <3.5%; see section 4.2). The dynamically
induced distance change ΔL∕L0 and density change Δ*∕*0 between the two receivers have the same order
of magnitude as the LF strain amplitude, which is at least 2 orders of magnitude smaller than the relative
variations in the HF traveltime Δt∕t0. Thus, in our experiments, a change in arrival time of the HF pulses Δt
lag/lead can be directly related to a variation in elastic modulus ΔM using

ΔM
M0

≈ −2Δt
t0

. (5)

It is ΔM∕M0 that is plotted in Figure 7b as a function of time (ΔM∕M0 is in percent).

The HF signals received at detectors 1 and 2 have different amplitudes A1 and A2, with the same basic shape
(the amplitude of the normalized cross-correlation function is larger than 0.88). An amplitude is associated
with each HF pulse by taking the maximum amplitude of the Fourier spectrum of the pulse found at a fre-
quency close to 1 kHz (as above a 4 ms Tukey window that covers a pulse is used). From the HF attenuation
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Figure 7. (a) LF strain experienced by the HF pulses, (b) variation in the elastic modulus M (from changes in HF arrival
time), and (c) variation in the HF attenuation + as a function of time for a LF force amplitude of 133 kN. (d) Variation in
the elastic modulus M (from changes in HF arrival time) and (e) variation in the HF attenuation + as a function of the
LF strain for a LF force amplitude of 133 kN. The solid black lines indicate the interpolated (or up-sampled) behaviors
using the result of the projection procedure. The dashed line in Figure 7d shows the parabolic fit applied to calculate the
nonlinear elastic parameters (equation (7)). Each data point (open circle or cross) in these plots is associated with one
HF pulse.

RENAUD ET AL. ©2014. American Geophysical Union. All Rights Reserved. 9



Journal of Geophysical Research: Solid Earth 10.1002/2013JB010625

+("LF) defined by A2("LF) = A1("LF) × exp[−+("LF)L] × D(L), where D(L) accounts for diffraction effects,
we find

+("LF) =
1
L

ln
(

A1("LF)
A2("LF)

)
+ 1

L
ln (D(L)) (6)

Because geometrical spreading of the wavefront (wave diffraction) represented by D(L) is not expected
to be significantly changing as the LF strain amplitude is increased, the measured change in attenuation
+("LF) − +0 only accounts for changes in intrinsic absorption and scattering at 1 kHz. The HF attenuation
in undisturbed material is +0. The change in HF attenuation +("LF) − +0 is reported in Figure 7c. The data
shown in Figures 7a–7c can be captured more informatively in Figures 7d and 7e, where the modulus shift
(Figure 7d) and the attenuation shift (Figure 7e) are plotted as a function of the LF strain "LF.

The elastic nonlinearity measured in soil is complicated as we shall see. We use two approaches that allow
us to simplify the analysis but nonetheless interpret the nonlinear elastic response: a time domain approach
and a frequency domain approach. In particular, note that these approaches do not provide a quantification
of modulus-strain hysteresis.
3.6.1. Time Domain Approach
When the LF strain has reached a constant amplitude (at a given driving LF amplitude), the elastic response
of soil is (approximately) in a meta stable steady state. During this period (between 80 ms and 650 ms; see
Figure 7) it is possible to plot the relative variation in the elastic modulus as a function of the LF strain. Then
we apply a parabolic fit to the relation between the relative variation in the elastic modulus (M("LF)−M0)∕M0

and the LF strain "LF:

M("LF) − M0

M0
≈ CE + #E "LF + $E "2

LF. (7)

#E and $E are the classical nonlinear elastic parameters for quadratic and cubic elastic nonlinearity, respec-
tively [e.g., Johnson et al., 1996]. These parameters are defined for materials exhibiting classical nonlinear
behavior due to atomic anharmonicity [Zarembo and Krasil’nikov, 1971]; however, it is commonly used to
characterize materials whose nonlinear behavior is due to grain contacts, cracks, etc. CE quantifies the DC
offset of the modulation in the elastic modulus due to nonlinear material conditioning or hysteretic nonlin-
ear elasticity [Guyer and Johnson, 2009]. For both changes in elasticity and attenuation, we also calculate the
time-average variation over one LF period.
3.6.2. Frequency Domain Approach
In the nonlinear encounter between the probe and pump we expect the time of flight of the probe to be
influenced by the timing of the LF strain, e.g., the shift in ΔM is modulated at frequency fLF and multiples of
fLF [Renaud et al., 2008; Rivière et al., 2013]. The analysis of this modulation cannot be carried out by applying
a conventional Fourier transform because the sampling period is not constant in a time trace (M − M0)∕M0

composed of the combination of the three components in a run. To examine evidence of the probe carrying
information about the time dependence of the pump, for each run, we carry out a projection analysis of the
signals dM(ti) = (M(ti) − M0)∕M0, where ti , i = 1 · · ·N are the series of time points in the run. For example,
from Figure 7b there are about 140 (M−M0)∕M0 measurements over approximately 600 ms or 18 LF periods
TLF = 1∕fLF. The projection analysis, designed for sparse signal sets and/or irregularly sampled signals (see
Appendix A), allows one to retrieve the modulation amplitude in a time trace (M − M0)∕M0 at the pump
frequency fLF and multiples of fLF. The projection procedure is also applied to the time traces of the LF strain
"LF(ti) (Figure 7a) and the attenuation change (+(ti) − +0) (Figure 7c). Finally, it is possible to up-sample the
result of the projection by using a time vector having a high sampling frequency, and the up-sampled time
traces are used to plot interpolated behaviors for the time domain approach.

3.7. Analysis of LF Wave Propagation
The signal broadcast from the LF source (base plate of the T-Rex) is measured by an accelerometer mounted
on the base plate and by the two accelerometers that are buried at 4 m and 5 m depths. However, measuring
the compressional wave speed cannot be carried out with the LF signal, because the detectors are located
in the near field of the LF source. Indeed, the size of the LF source (2 m) is close to the propagation distance
to the buried detectors (≈ 5 m). In this situation, compressional and shear (and Rayleigh) waves generated
by the base plate of the T-Rex overlap spatially; therefore, the arrival of the LF signal at detectors 1 and 2
cannot be simply related to a pure compressional wave. Both shear and compressional waves contribute
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Figure 8. (a) Arrival time of the LF signal at the two buried accelerometers
(time delay with respect to the LF signal measured by the accelerome-
ter mounted on the base plate of the T-Rex) as a function of the LF strain
amplitude. (b) Corresponding relative change in elasticity as a function of
the LF strain amplitude derived from the relative change in arrival time of
the LF signal.

to the soil motion recorded by the
two buried accelerometers. Addi-
tionally, the determination of the
propagation distance of the LF wave
is problematic because the distance
between the LF source and the buried
detectors is close to the size of the
LF source. Nonetheless, it is possible
to convert a relative change in delay
time of the LF signal recorded on the
buried accelerometers with respect
to the LF signal measured on the
base plate of the T-Rex (by applying a
cross-correlation method) to a relative
change in elasticity as the LF driving
amplitude is increased. However, as
noted, the elastic modulus is not the
compressional wave modulus (as in
DAET; see equation (5)) because the
arrival time of the LF signal cannot be
attributed to a pure compressional
wave. We will see in section 4.1 that
the variations in arrival time of the
LF signal are much larger than those
observed with DAET; therefore, we
must use the exact expression of
equation (5), ΔM∕M0 = −Δt2∕t2

0.

4. Results

How does the nonlinear character of the material involved in this study make itself known in the observa-
tions that can be made? The pump modifies the material through which the probe propagates. So the probe
is to be studied. But additionally, the pump interacts with itself. Consequently, we can look for evidence
of the nonlinear elastic behavior of the material both in the received pump signals and in the received
probe signals.

4.1. Pump
As noted previously, the pump signal is recorded by an accelerometer mounted on the base plate of the
T-Rex as well as at the two downhole detectors. The times of flight, calculated using a cross-correlation
method, between the LF acceleration signal at the base plate and the LF acceleration signal at detectors 1
and 2 (see Figure 3), are found. In Figure 8 the relative change in elastic modulus (derived from the relative
increase in the arrival time of the LF signal) is plotted as a function of the LF strain as the AC driving force
is increased from 9 to 222 kN, corresponding to a LF strain amplitude (between the two buried accelerom-
eters) from 9 × 10−7 to 5 × 10−5. At the largest AC driving force, an effective relative decrease in elastic
modulus of 50% is observed. This observation accords with a variety of similar observations [Johnson and
Jia, 2005; Nazarov et al., 2010].

The frequency content of the pump signal "LF(t) may also be analyzed, since the progressive distortion of its
waveform as it propagates [Hamilton and Blackstock, 1998] carries information about the nonlinear mate-
rial properties. This method is commonly applied with a source able to broadcast a sine wave with very low
harmonic distortion. Unfortunately, the waveform generated by seismic vibrators such as the T-Rex is signif-
icantly distorted [Lebedev and Beresnev, 2004]. In addition, the buried detectors are in the near field of the
LF source. In this configuration, there exists no analytical solution to estimate nonlinear elastic parameters.
Consequently, this method is not suitable to this experimental situation.
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Figure 9. Up-sampled variation in (a) the compressional wave modulus M and (b) the HF attenuation + as a function
of the LF strain, obtained as in Figure A1c using the results of the projection procedure. Behaviors for all six driving LF
amplitudes are superimposed (only one response at the lowest LF amplitude is shown).

4.2. DAET
The probe signal is recorded at the two downhole detectors. A change in compressional wave modulus,
deduced from the changes in time of flight between the detectors (equation (5)), is found to be a
complicated function of the instantaneous LF strain. For six LF driving amplitudes (the reference run
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Figure 10. (a–c) Nonlinear elastic parameters measured with DAET and evaluated with the parabolic fit (equation (7)).
Time-averaged variations in the compressional wave modulus M and the HF attenuation + as a function of the LF strain
amplitude are shown in Figures 10c and 10d, respectively. The time-average change in elastic modulus has the same
unity as CE .
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Figure 11. Amplitude of the modulation of the compressional wave
modulus M obtained with the projection analysis at the LF driv-
ing frequency and at twice the LF driving frequency as a function
of the LF strain amplitude (equation (A8)). R1, is the modulation
amplitude at 30 Hz, and R2, is the modulation amplitude at 60 Hz
(equation (A9)).

and five finite amplitudes) the up-sampled
modulus shift and attenuation shift as a
function of the instantaneous value of the
LF strain "LF are shown in Figure 9. The
results for all six LF strain amplitudes are
plotted. In each panel the sense in which
the hysteresis loops are traversed is indi-
cated with arrows for the largest LF driving
amplitude (222 kN).

In Figure 10 the nonlinear parameters
estimated by applying a parabolic fit
(equation (7)) are plotted as a function of
the LF strain amplitude. A time-average
measure of the modulus shift and attenua-
tion shift for each LF strain amplitude is also
provided by averaging over the instanta-
neous values of the LF strain (during one LF
period). The six reference runs at the low-
est LF amplitude (AC driving force = 9 kN)

produced essentially the same result and suggests that there was little unrecoverable change in the elastic
state of the material during the course of the experiment. The HF wave strain amplitude and the HF wave
speed in undisturbed soil remain constant during the experiment. From the time-averaged variation, we see
that there is an average modulus shift to lower modulus and an average attenuation shift to larger attenua-
tion, which become larger as the magnitude of the LF strain increases. Unsurprisingly, the average change in
modulus experienced by the probe behaves qualitatively like the change in modulus experienced by the LF
broadcast (Figure 8). #E shows a fairly constant value of −1500 ± 15%, whereas $E decreases tremendously
from 6 × 109 to 2 × 107 as the LF strain amplitude increases from 10−6 to 5 × 10−5.

The dynamic component of the change in modulus (the difference between the instantaneous modulus
and the average modulus) is a complicated function of the instantaneous LF strain. To look into the behavior
of this part of the modulus we turn to the decomposition provided by the projection analysis. In Figure 11
we show the modulation amplitudes at fLF and 2fLF, R1, and R2, (equation (A9)), as a function of ",, the LF
strain amplitude experienced by the HF pulses. The amplitude R1, scales with ",. The amplitude R2, appears
to scale approximately as a power of ", that is less than 1. The nonlinear parameter #E can be estimated by
applying a linear fit to the relation between the modulation amplitude at fLF (R1,) and the LF strain [Renaud
et al., 2008; Rivière et al., 2013]. This leads to #E = −1240 and thus accords with values calculated apply-
ing a parabolic fit in the plots of instantaneous changes in elastic modulus versus instantaneous LF strain
(Figures 7d and 10). The linear fit applied to the LF amplitude dependence of R1, (Figure 11) provides a more
accurate estimate of #E because it is not affected by the hysteresis loops (Figure 7d). The measured scaling
between the modulation of the elastic modulus sensed by the probe at fLF and the LF strain amplitude can
be described by classical nonlinear elasticity (#E), but this is not the case for the modulation at 2fLF (R2, in
Figure 11). Indeed, classical cubic nonlinearity ($E) predicts a power law with a scaling exponent of 2, instead
of less than 1 as found experimentally. The slope of less than 1 in Figure 11 is consistent with the fact that
the nonlinear parameter $E decreases as the LF strain amplitude increases (Figure 10b).

In summary two qualities are conferred on the probe wave as it propagates through the material; it moves
more slowly, experiencing the softening of the material caused by the pump, and it acquires an ,LF and
2,LF components by coupling to the pump. In this way the probe reveals important information about the
nonlinear character of the material.

5. Discussion
5.1. Comparison With Lab Measurements
The estimation of the nonlinear elastic parameter #E with the time domain and frequency domain
approaches from DAET leads to values of order −103, the same order of magnitude as those measured at the
laboratory scale applying DAET and other techniques in room-dry rocks [Guyer and Johnson, 2009; Renaud et
al., 2011, 2013a; Winkler and McGowan, 2004] and in unconsolidated glass bead packs [Brunet et al., 2008]. As
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in rocks at the laboratory scale [Renaud et al., 2012, 2013b; Rivière et al., 2013], the nonlinear elastic param-
eter $E is not constant; it decreases (in absolute value) as the LF strain amplitude increases. Thus, classical
cubic elastic nonlinearity ($E) is not suitable to describe the nonlinear elastic response of soil. As observed in
laboratory studies, the LF strain produces a time-average reduction of the elastic modulus in soil (Figure 10),
and the higher the LF strain amplitude, the larger the softening. A reduction of the elastic modulus of 2%
is observed for a LF strain amplitude of order 10−5. Laboratory measurements in rocks show time-average
changes in modulus of the same order of magnitude [Renaud et al., 2013a, 2011].

5.2. Different Information Carried by the Pump and the Probe
The time-average change in elastic modulus measured with the pump is of order 10% (Figure 8) while the
probe experiences an average change in elastic modulus of order 1% (Figure 10c). This difference comes
from the fact that the probe carries local information on the effect of the pump on the material. On the
contrary the pump signal measured at the two downhole detectors carries information on the interaction
between the pump wave and the material, from the LF source to the detectors. The effect of interaction
between the pump wave and the material on the propagation of the pump wave is cumulative. Since the
LF strain close to the LF source is an order of magnitude larger than at the two downhole detectors (due
to diffraction loss), the average change in elastic modulus measured by the pump is expected to be larger
than that measured by the probe at 5 m away from the LF source. Additionally, the relative change in arrival
time of the LF signal at 4 m or 5 m depths (as the LF strain amplitude increases) cannot be related to a rela-
tive change in the compressional wave modulus M = ( + 2) as in DAET. Indeed, the buried accelerometers
are situated in the near field of the LF source; therefore, the LF motion measured by the accelerometers is
the result of the compressional, shear, and Rayleigh wave fields generated by the LF source that coexist spa-
tially at this location as noted previously. As a result the information carried by the pump and the probe is
different and can only be compared qualitatively.

5.3. Comparison With Nonlinear Resonance Spectroscopy
Our in situ measurements in soil can be compared to observations made applying nonlinear resonance
spectroscopy in situ to soil employing the same vibrator source [Johnson et al., 2009]. This method allows
one to measure a time-average change in elasticity. The authors reported a reduction of the shear elastic
modulus ) to about 56% of its value at rest, for a pump frequency and strain amplitude similar to our study.
The time-average reduction in elastic modulus is therefore significantly larger than what we observed. When
applying DAET in our study, the base plate of the T-Rex is driven vertically instead of transversally in the
work by Johnson et al. [2009] where a shear pump wave is generated. Thus, differences between our results
and those by Johnson et al. [2009] may be due to the different nature of the pump strain. The shear modu-
lus ) may vary more under the effect of a shear strain than under the effect of a volumetric strain having the
same amplitude. This would explain why the relative reduction in soil modulus reported by Johnson et al.
[2009] is larger than what we observed. Future DAET experiments could employ the T-Rex driven transver-
sally in order to generate a shear pump wave; then one should be able to compare the results to the work
by Johnson et al. [2009].

5.4. Current Limitations and Future Improvements
A limitation of the current setup is the fact that the soil must be removed to place the HF source and the two
detectors in the borehole. Therefore, the compaction inside and outside the borehole may be different and
alter the observations. An improvement of the method would be to use two (or more) boreholes, one con-
taining the HF source and the other(s) containing one or more detectors. The LF source would be therefore
placed in between the two boreholes, as the setup originally developed for medical ultrasound [Renaud et
al., 2008]. Moving the HF source and detector vertically in the boreholes would enable one to probe the soil
at different depths. Indeed, the nonlinear elasticity of soil is expected to be depth dependent, this being a
consequence of the lithospheric pressure. Ultimately, DAET measurements could include the broadcast and
analysis of the probe at multiple depths, providing the means for nonlinear elasticity of soil to be assessed
at different depths.

Finally, applying DAET with three different configurations for the probe (compressional wave and shear
wave, different polarization of shear wave, and different propagation direction with respect to the LF
pump field) as in conventional lab acoustoelastic testing [Winkler and McGowan, 2004] could provide esti-
mates of the three third-order elastic constants, required to describe classical quadratic nonlinear elasticity
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in an isotropic solid material [Zarembo and Krasil’nikov, 1971; Guyer and Johnson, 2009; Hamilton and
Blackstock, 1998].

6. Conclusions

A methodology termed Dynamic Acoustoelastic Testing to infer nonlinear elastic properties of materials was
tested in the field using a large shaker source known as T-Rex, which heretofore had only been attempted
on laboratory rock specimens. Even in a relatively soft soil, clear identification of the HF probe and LF
pump signals was made for a range of LF source amplitude corresponding to soil dynamic strain levels of
9 × 10−7 to 5 × 10−5 at 4.5 m depth. Despite an experimental arraignment that may have introduced soil dis-
turbance, the technique appears viable for determining nonlinear elastic parameters. Challenges remain to
develop the technique for a broader application to deeper sediments and higher strains for determination
of wave amplitude dependence of bulk and shear moduli. Clearly, in situ measurement of the nonlinear site
response is advantageous to provide optimal information for prediction of strong ground motion at a site.
DAET is a method that holds promise for doing just that.

Appendix A: Projection Analysis

A projection analysis, designed for sparse signal sets and/or irregularly sampled signals, employs a complete
set of functions that are constructed to be orthonormal on the sparse signal set [Rivière et al., 2013]. These
functions are

Sn(ti) = qn sin (n ,LF ti), i = 1 · · · N, (A1)

Cn(ti) = rn cos (n ,LF ti), i = 1 · · · N, (A2)

< SnSm >= $nm , (A3)

< CnCm >= $nm , (A4)

< SnCm >= 0 , (A5)

where ,LF = 2πfLF and n = 1, 2, · · · . Practically, qn and rn are found using the numerical Gram-Schmidt
process [Rivière et al., 2013]. We project the sparse signal dM = (M − M0)∕M0 (Figure 7b) on the series of
orthonormal functions and we have

an =< Sn dM >=
N∑

i=1

Sn(ti) dM(ti), (A6)

bn =< Cn dM >=
N∑

i=1

Cn(ti) dM(ti), (A7)

and

d p
M (ti) =

N∑
n=1

anSn(ti) +
N∑

n=1

bnCn(ti), (A8)

i.e., an (respectively, bn) is the amplitude with which dM carries the time structure of Sn (respectively, Cn). In
this expansion of dM the sum on n goes to a practical limit, N. To characterize the presence of frequency n,LF

in dM we use the amplitudes

Rn, =
√
(anqn)2 + (bnrn)2. (A9)

The projection procedure is also used on the LF strains "LF(ti) found as in Figure 7a. We write

" p
LF(ti) =

N∑
n=1

gnSn(ti) +
N∑

n=1

hnCn(ti), (A10)

RENAUD ET AL. ©2014. American Geophysical Union. All Rights Reserved. 15



Journal of Geophysical Research: Solid Earth 10.1002/2013JB010625

Figure A1. (a) LF strain as a function of time, exemplary result of the projection procedure (equation (A10)). (b) Relative
modulus variation as a function of time, exemplary result of the projection procedure (equation (A8)). (c) Relative varia-
tion in elastic modulus as a function of the LF strain, comparison between raw experimental data, signal obtained by the
projection procedure, and up-sampled signal after decomposition. (d) Root-mean-square error of the difference between
the result of the projection analysis and the experimental data as a function of the order N of the decomposition. The
driving LF force amplitude is 133 kN.

where gn and hn are equivalent to an and bn in equation (A8). As an illustration of signal construction using
the projection procedure we show, Figure A1, (a) a time segment of "LF(ti) as in Figure 7a and its recon-
struction " p

LF(ti) as in equation (A10), (b) a time segment of dM(ti) as in Figure 7b and its reconstruction
d p

M (ti) as in equation (A8), and (c) the values of dM("LF) as in Figure 7d, the reconstruction d p
M (" p

LF) obtained
from Equations A8 and A10 and an up-sampled version of the reconstruction. Finally, Figure A1d shows the
root-mean-square error between experimental data dM(ti) and the projection result d p

M (ti) for different val-
ues of N. It is shown that N > 4 does not further improve the decomposition of the signal. Similar trend is
found for the LF strain signal, and therefore, N = 4 is chosen for both LF and HF signals.
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